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INTRODUCTION 
Computation of low-frequency field penetration through magnetic and/or conducting 
materials is important for quantifying electromagnetic compatibility issues in devices and 
facilities, as well as prediction of field signatures external to ships and submarines due to 
internal electrical machinery.  A computational procedure is described for accurately 
predicting the penetration of low-frequency fields through a cylindrical structure, 
possibly arranged in layers.   The internal source being shielded is a large multi-turn coil 
having arbitrary location within the cylindrical shell.   Field computation is formulated 
using multi-region cylindrical harmonic expansions with enforcement of continuity on 
tangential field components at each material interface.   Example field intensities and 
shielding are computed for a steel pipe at frequencies of 1 Hz and 1 kHz.    The relative 
effectiveness of induced magnetic shielding and eddy-current shielding is considered. 

FORMULATION 
Computation of fields both within and external to a cylindrical shield is formulated using 
multi-region cylindrical harmonic expansions.   Consider the single layer shell depicted 
in Figure 1.    The field source is an offset, 500-turn coil whose quasi-static fields can be 
computed using superposition of the closed form elliptic integral expressions for single-
turn fields derived in Smythe’s classic text on Static and Dynamic Electricity.      
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The coil fields interact with the conducting (and perhaps magnetic) material of the shell 
to provide reflected fields in Region 1, standing and traveling waves in Region 2 (along 
with induced eddy currents) and outbound penetrating fields in Region 3.     
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Free-Space Regions 1 and 3:  
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Material Region 2:  

The radial eigenvalues in these equations are given by:
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EXAMPLE COMPUTATIONS 
Example field intensities are shown in Figure 2 for the case of a 3/16” thick steel pipe  at 
a frequency of 1000 Hz.   The strong shielding shown is a result of both the induced 
magnetization in the pipe and the induced eddy currents due to the conductivity of the 
steel.  The magnetization component is relatively frequency independent, while eddy 
currents, and their resultant shielding, are approximately proportional to frequency.   The 
reduction of shielding due to diminished eddy currents is illustrated in Figure 3 for the 
case of 1 Hz.       
 
Shielding effectiveness is the dB ratio of field strength in the shielded region without the 
shield present divided by that with the shield in place,      
 
  

10
| Field Due to Coil Without Shield|=20log

| Field With Shield Present|dBS ⎧ ⎫
⎨ ⎬
⎩ ⎭ 

 
At f=1000Hz, the 3/16” steel pipe provides  for both H- and E-fields.    At 
f=1Hz the shielding effectiveness drops to about 12 dB for the H-field and 7 dB for the 
E-field at a radial distance of 0.2m from the pipe exterior wall nearest to the coil. 

37dBdBS



 

 
Figure 2 Magnetic and Electric Field Intensities for Steel Cylinder at f=1000Hz. 

 
 

 
 

Figure 3 Magnetic and Electric Field Intensities for Steel Cylinder at f=1Hz. 
 

CONCLUSIONS 
Computation of fields due to a 500 turn coil positioned arbitrarily within a pipe 
constructed of conducting and/or magnetic material is performed using multi-region 
cylindrical harmonic modal expansions.    Results involving steel and aluminum indicate 
the relative significance of shielding due to induced magnetization and eddy-current 
generation.   Extension to an arbitrarily oriented coil is being investigated.   The ultimate 
goal is to design multilayered structures composed of conducting and magnetic materials 
for a specified frequency range.   Such shields will be designed under constraints of layer 
number, thickness and weight using an evolutionary optimization algorithm. 
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